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A method is described which permits multislice computation of n-beam diffraction intensities directly from 
the structure amplitudes. This is achieved by successive convolution, a numerical technique compatible with 
the multislice procedure. 

The multislice method for the calculation of the scattered 
wave function, ~hk(H), from a crystal of thickness H, is 

~,,~(H) = . . .  [O(Az)  • [ a ( z l z )  • [a(zlz)]e(~z)]P(Az)] 
. . .  to n convolutions, (1) 

where H = n .  Az, P(Az) is the propagation function, 
exp (2~Zi(hkAZ), (~k being the excitation error of the hk 
reflexion, and Q(Az)= ~,~k{exp [i~%(x,y)aAz]} is the phase- 
grating function for a slice Az thick. Here the symbol • 
has been used to denote convolution, and ~-hk used to 
denote Fourier transformation. ¢p(x,y) is the projected 
potential in the slice of thickness Az and a is the interaction 
parameter, a =  7r]2W. 2/[1 + (1 -f12)a/2], 2 the relativistic 
wavelength, W the accelerating potential, and fl=v/e, v 
being the electron velocity and c the velocity of light (Cow- 
ley & Moodie, 1957; Goodman & Moodie, 1974; Lynch, 
1971). 

In the numerical calculation of equation (1) the usual 
practice has been to evaluate Q(Az) by summation of the 
structure amplitudes, Vhk0, to obtain ~op(x,y), calculation 
of cos [~op(x,y)aAz]+i sin [q)p(x,y)aAz] at each sampling 
point, and then back-Fourier transformation. It is the pur- 
pose of this communication to demonstrate a method which 
evaluates Q(Az) directly from the Vhk0. 

The expression 

exp [i~%(x,y)aAz] = 1 + i qh,(x,y) (2) 
s 

may be calculated for finite s when the error to second 
order becomes 1/2! 1/s [aAz~op(x,y)] z. Typically %,(x,y)~ 
102 V, Az~ 1 A,, a ~  10 -3 so that for s ~  103 the error is of 
the order of 10 -5 , which is acceptable. 

It is convenient to work with the Fourier transform of 
equation (2), viz. 

Qhk(Az)=[fi(h,k)+ iaVhk-~-] * [fi(h,k)+icrVhk-Af ] * 

. . .  to s convolutions. (3) 

The calculation of this expression is reduced considerably 
by a device equivalent to that used by Sturkey (1962) for 
the matrix method whereby if s = 2 r, then 

[ A z ]  Az 
Q,k ~ =3(h,k)+itrVhk ~ = Q1 

and 
[ 2 . A z ]  

Qnk[ (2)' . [ = Q I * Q I = Q 2  

and 

and only r convolutions are required. 
The equations (4) have been used as a numerical proce- 

dure to evaluate the phase-grating function. Table 1 shows 
the scattered amplitudes of the first seven reflexions cal- 
culated by the two procedures. The calculation was made 
for W4Nb26077 (Anstis, Lynch, Moodie & O'Keefe, 1973), 
systematics case, 00l reflexions, Az= 5 A. The only signifi- 
cant differences in the calculated values are in the 5th figure, 
and further, even out to the 30th order, the differences re- 
main of the same order. 

Table 1. Scattered amplitudes calculated by both methods for 
a 5 A slice of W4Nb26077 

Usual method Convolution method 
1 Real Imaginary Real Imaginary 
0 0.997786 0.063879 0.997787 0.063870 
1 -0.000068 0.000794 --0.000068 0.000804 
2 0.000266 -0.003017 0.000266 -0.003022 
3 0.000238 -0-002835 0.000237 -0.002825 
4 -0.000221 0.002726 -0.000220 0.002710 
5 -0.000343 0.004239 -0.000344 0-004255 
6 0.000012 0.000074 0.000013 0.000061 
7 0.000491 --0.006289 0.000491 --0.006288 

The phase grating calculated by this convolution method 
has been used in a 29-beam multislice procedure to obtain 
scattered amplitudes as a function of thickness. Again, 
results using the new procedure compared with the results 
using the conventionally calculated phase grating are iden- 
tical to one part in 105 up to crystal thicknesses of 1000 A. 
Thus the accumulation of error is still within acceptable 
limits. 

The choice of s and hence of r, is controlled by calcula- 
tion time limitations and by the number of significant bits 
available for foat ing-point  calculation. The latter con- 
sideration arises from the relative magnitudes of the vari- 
ables. For  example, a weak Vhko is of the order of 10 -1 V, 
a is of the order of 10 -3 and s =  103 gives terms of the order 
of 10 -6 . Thus the convolution procedure results in terms 
of the order of 1 (the central beam) added to terms of the 
order of 10 -12. Hence, this sets a limit of 103 for s for a 
computer with a numerical precision of 12 decimal places. 
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There are several criteria that may be used to evaluate 
the relative merits of the two forms of calculation. First 
there is the question of calculation time. A fast-Fourier 
transform will only require n .  logzn operations for n re- 
flexions. However, there is still the necessity to evaluate 
sin [a~o(x,y)Az] and cos [tr~o(x,y)Az] at n sampling points. 
Thus, although there are required r .  n 2 operations for the 
convolution method, the calculation times remain remark- 
ably close together for a range of values of n (29 to 435). 
Thus there is no particular advantage in either method on 
this point. 

Second, there are the questions of convenience and 
amount of memory storage required. In this case, the con- 
volution method is far better as it requires far less storage 
and the procedure is identical with that used in the kernel 
of the multislice method, and thus a considerable economy 
in computer code is achieved. In terms of non-specialist 
investigators requiring their own routines for calculation, 

the convolution method is felt to be simpler to set up in the 
computer. 

Finally, there are questions of physical insight gained 
from intermediate steps in the calculation. In this respect, 
it is felt that the potential distribution that is calculated in 
the course of the usual method is a great help, particularly 
in symmetry considerations and hence the convolution 
method is at a disadvantage in this case. 
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A comment on Tiwari, Prasad & Srivastava's paper The arcing o f  X-ray diffracion spots in X-ray photo- 
graphs o f  cadmium iodide crystals. By V.K.AGRAWAL,* Department of Physics, Hastinapur College, New Delhi- 
110021, India 

(Received 5 September 1973 ; accepted 11 September 1973) 

It is shown that the arcing in X-ray photographs of CdI2 crystals cannot be attributed to paracrystalline 
distortions in crystals. 

In the paper quoted (Tiwari, Prasad & Srivastava, 1973) the 
authors attempted to explain the arcing on a-axis oscilla- 
tion photographs of CdI2 crystals in terms of paracrystalline 
distortions. Earlier Prasad & Srivastava (1971) had ex- 
plained the arcing observed on X-ray c-axis oscillation 
photographs as crystal shape and size effects; this has al- 
ready been shown to be wrong (Agrawal, 1973). The latter 
explained it in terms of tilt boundaries consisting of unit 
and partial edge dislocations created during crystal growth, 
as Agrawal & Trigunayat (1969a, b; 1970) and Agrawal, 
Chadha & Trigunayat (1970) had already suggested in the 
cases of arcing in X-ray a-axis oscillation and Laue photo- 
graphs of CdI2, CdBr2 and PbI2 crystals. Agrawal (1970, 
1971) had also established the correlation between the 
phenomena of arcing and polytypism on the basis of experi- 
mental results. However, it is not necessary that the com- 
pounds displaying polytypism should also exhibit arcing, 
whereas the opposite may be true. 

The diffraction patterns observed in CdI2 crystals are 
quite different from those observed in chain molecules or 
fibrous crystals. In general, the patterns for natural fibres 
do not yield the reciprocal lattice of the crystal because, 
instead of a single crystal, one has a 'two-dimensional 
powder' resulting from the grouping of crystallites of 
random orientation along the axis of the fibre. The pattern 
therefore gives the figure of revolution obtained by rotating 
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the reciprocal lattice for a single crystal around the fibre 
axis (Guinier, 1963). The crystals of cadmium iodide exhibit 
arcs of various shapes, e.g. fork, cross, square, semi- 
elliptical, etc., each consisting of two or more spots, corre- 
sponding to each reciprocal lattice point (A~awal  & 
Trigunayat, 1969a), whereas in chain molecules or fibrous 
crystals each reciprocal lattice point gives rise to its own 
elongated and broadened spot. The intensity and broadening 
of the spots are a maximum near or at the centre and de- 
crease towards their ends. The CdI2 crystals also exhibit 
closed rings on Laue photographs each corresponding to a 
reciprocal lattice point, whereas in the latter case the spots 
are bridged by intensity ridges forming a ring because 
various reciprocal-lattice points or nodes at equal distances 
from the centre of the net are connected to form a ring due 
to paracrystalline distortions (Vainshtein, 1966). Besides, 
in the latter case the geometry of the diffraction pattern 
would not change if the crystal is irradiated either wholly 
or partially by the X-ray beam because the lattice cells 
which are different from one another are randomly dis- 
tributed, whereas in the crystal exhibiting arcing or rings 
on the photographs, the diffraction pattern does change 
(Agrawal & Trigunayat, 1969a, Figs. 4 and 5; 1969b, Figs. 
12 and 13). 

In the paper quoted the paracrystallinity in CdI2 crystals 
had been introduced during growth in two possible ways. 
Firstly, the fluctuations in axial parameters due to water 
molecules adsorbed on the surface of layers forming the 
crystal during growth, which itself is unrealistic, would give 
rise to (i) streaking joining the reflexions on the layer lines 
due to the c-axis fluctuations and (ii) extra spots occurring 


